

Neutronics Design and Analysis of the 50 MWe Novel Modular BWR (NMR-50) with Multi-physics Simulation Code System

Zeyun Wu, Ph.D.
School of Nuclear Engineering
Purdue University
West Lafayette, IN

Presented at

NIST Center of Neutron Research

Gaithersburg, MD

January 13th, 2014

Outline of the Talk

- Introduction
- Design Tasks in the First Phase
- The NMR-50 Core Modeling
 - CASMO/PARCS/RELAP5 Code System
- Fuel Assembly Design and Analysis
- Core Simulation and Performance
- Summary

Introduction of the NMR-50

- NMR-50 is a small modular reactor design featuring with latest BWR safety technologies.
- Research labs at Purdue University take the leading role of the NMR-50 development.
- NMR-50 is an improved design which is originally down scaled from GE 600 MWe SBWR.
- Logical path to accomplish NMR-50 may require scaling study, T/H design, neutronics analysis, safety analysis and experimental testing, etc.
- Natural circulation instability and transients are examples remained as challenges to passive safety regards in NMR-50.

Small Modular Reactors (SMR)

- The size of the reactor unit is "small"
- Reactors can be deployed modularly

Name	Vendor	Power (MWe)	Type
mPower	B&W	125	PWR
NuScale	NuScale	45	PWR
IRIS-50	WESC	50	PWR
HPM(G4M)	LANL	25	LMFR
NMR-50	Purdue	50	BWR

Schematic of the NMR-50

Ref. M. Ishii et al., "Double Passively Safe Novel Modular Reactor 50", NUEP CFP Narrative 3493

RPV designs of the NMR-50

SMR		NMR-50	NuScale	mPower
Туре		Simplified BWR	Integral PWR	Integral PWR
		Two-phase natural circulation	Single phase Natural circulation	Forced circulation
Rating		50 MWe	45 MWe	125 MWe
Primary syste	m pressure	7.171 MPa	12.76 MPa	14 MPa
Reactor	Height	8.5 m	13.7 m	23 m
vessel	Diameter	3.48 m	2.7 m	3.6 m
Refueling cycle		10 years	2 years	5 years
Enrichment		<5%	<4.95%	5%

Advantageous Features of the NMR-50

- Fully passive safety systems
- Two-phase natural circulation
- A compact and simplified design
- High energy conversion efficiency
- A long life core
- A reduced need for AC power

Design Tasks in the First Phase

- Scaling analysis to determine the preliminary design parameters of the NMR-50
- Develop NMR-50 thermal hydraulics model to perform safety-state design study
- Modify the integral test facility by following the scaling analysis code modeling
- Develop neutronics and thermal hydraulics coupled core model for reactor analysis
- Perform comprehensive neutronics and fuel cycle study in conjunction with the core T/H design.

Neutronics Design and Analysis Code System

Ref. Y. Xu and T. Downar, "GenPMAXS-V6: Code for Generating the PARCS Cross Section Interface File PMAXS", GenPMAXS manual, University of Michigan, March (2012)

Parallel Virtual Machine (PVM)

The messages coupling PARCS/Relap5 are transferred via PVM.

Fuel Assembly Candidate One (GE 8x8, 8 Gd Rods)

Fuel Cycle Length Study on GE Assembly

CASE #	1	2
Average U-235 wt%	4.26	5
Cycle Burnup (MWd/KgU)	30.46	36.91
Fuel Cycle Length (Years)	7.56	9.16
Local Peaking Factor	1.276	1.634
k-inf at BOC	1.04725	1.04831

Fuel Assembly Candidate Two (AREVA Atrium-10B)

Fuel Type	Enrichment (%)
1	2.83
2	3.88
3	4.61
4	4.85
5	5.00/3.5
6	4.85
7	5.00

Parameters Comparison between GE and AREVA Fuel Assembly

Assembly Type	GE-BP-8	Atrium-10B
Fuel rod array layout	8 x 8	10 x 10
Pitch of square rod array (mm)	16.200	12.954
Fuel rod outside diameter (mm)	12.27	10.05
Fuel rod cladding thickness (mm)	0.8126	0.6058
Pellet-to-cladding gap (mm)	0.2032	0.0851
Fuel density (g/cm3)	10.475	10.450
Gadolinium (Gd) rods U-235 wt%	1.8	5
Burnable poison	Gd	Gd
Number of fuel rods per assembly	60	91
Number of water rods per assembly	4	9
Fuel Assembly pitch (mm)	155.0	152.4

As an integral effect, the total fuel volume in AREVA assembly is raised by 2%.

Parametric Study Results of the AREVA Fuel Assembly

Fuel type and the assembly performance in three investigated cases.

	Case #1	Case #2	Case #3
1	5.00	5.00	2.83
2	5.00	5.00	3.88
3	5.00	5.00	4.61
4	5.00	5.00	4.85
5	5.00/ 0.0 ⁽¹⁾	5.00/ 3.5	5.00/ 3.5
6	5.00	5.00	4.85
7	5.00	5.00	5.00

¹Gd Fuel rod indicating both fissile enrichment and Gd weights of the fuel.

CASE #	1	2	3
Avg. U-235 wt%	5.00	5.00	4.75
Gd wt%	0.0	3.5	3.5
Rod diameter (mm)	10.05	10.05	10.55
Water/UO2 ratio	2.748	2.748	2.334
Specific power (W/gU)	9.74	9.81	8.76
Cycle Burnup (GWd/T)	37.345	36.720	33.395
Cycle Length (Years)	10.50	10.26	10.44
Local Peaking Power	1.458	1.741	1.268
k-inf at BOC	1.41262	1.07872	1.06059

The k-inf Behavior In the Fuel Cycle Lifetime

Thermal Restriction for the NMR-50 Core Design

- Maximum fuel linear power density (MFLPD)
 - Characterize the limit of peak clad temperature during LOCA
- Minimum critical power ratio (MCPR)
 - Characterize the critical heat flux when the dryout phenomenon occurs in BWR

Table. Reference Design Criterions from SBWR-600 and ESBWR

Reactor Type	SBWR-600	ESBWR
MFLPD (kW/m)	45.3	44.0
Average linear power density (kW/m)	16.6	15.1
Total peaking factor	2.73	2.91
Design axial peaking factor	1.45	1.50
MCPR	1.32	1.4-1.5

Single Assembly Core Design for NMR-50

NMR-50 Core design parameters (Prepared for PARCS input)

Core Property	NMR-50
Assembly layout	18 x 18
Active fuel length (m)	1.372
Bottom reflector length (m)	0.1524
Top reflector length (m)	0.1524
Water rods (total)	1024
Number of fuel assemblies	256
Number of reflector assemblies	19
Control blades	57

Radial view of quarter core configuration

Axial Zoning of the Gd Fuel Rods

- Different Gd wt% in axial zones to counteract the reactivity penalty resulted from void in the upper region
- Two graphite reflectors are placed on bottom and top segment of the fuel rod
- ✓ The active fuel length for the fuel rod is 137.2 cm

Simplified T/H Model for NMR-50 Core

Some T/H design parameters (Prepared for RELAP5 input)

Core Property	NMR-50
Designed thermal power (MWth)	165
Core coolant rate (kg/h)	2.23 x 10 ⁶
Power density (kW/liter)	20.75
Core pressure (MPa)	7.178
Active fuel length (m)	1.372
Core average quality	0.143
Coolant saturation Temp. (°C)	287.3
Core Inlet Temp. (°C)	278.5
Total core flow area (m²)	4.013
Core bypass flow area (m²)	1.763

Radial Mapping of Neutronics and T/H Model

Relap5 Vol.	Channel type	# of Assemblies
210	Bypass channel (reflector)	19
230	Average channel	46
250	Peripheral channel	17
270	Hot channel	1

Some Neutronics Results for NMR-50 at BOC

Initial CR Positions

			0	0
		0	0	0
	0	0	0	2192
0	0	0	2192	2392
0	0	2192	2392	2392

Final CR Positions

			0	0
		0	0	0
	0	0	0	229
0	0	0	229	249
0	0	229	249	270

Fig. Control rod insertion positions for criticality search at BOC. The notch value of a fully inserted control rod is 3192.

Axial power distribution for different flow channel

Radial power distribution

The T/H Performance of the NMR50 at BOC

	SBWR-600 [Ref.]	NMR-50
MFLPD (kW/m)	45.30	15.36
Average LPD (kW/m)	16.60	5.16
Total peaking factor	2.73	2.98
MCPR (minimum)	1.32	2.25

Ref. Simplified Boiling Water Reactor Standard Safety Analysis Report (SSAR)," General Electric, 25A5113 Rev. A, August, 1992.

Results of Core Fuel Cycle Study

The k effective behavior along the full fuel cycle with control rods all out (RAO) condition.

Axial Power Shape at BOC, MOC and EOC

The Performance of the thermal Limit Parameters along with the fuel cycle

Recall the thermal restriction in SBWR-600:

MFLPD= 45.30 kW/m and MCPR=1.32.

Summary of the Talk

- The neutronics and T/H coupled core design model for the NMR-50 based on CASMO, PARCS and RELAP5 code system is fully accomplished.
- Parametric study on fuel assemblies are carried out to select the optimized candidates to meet the design objective and constraints.
- The neutronics/TH coupled core simulation at both BOC and the full fuel cycle are preformed with the developed NMR-50 model and some performance results are delivered.
- The desired 10 years fuel cycle length has been achieved with the present design without the violation of the key thermal hydraulics performance criterions.

